Lesson 9 - Monomial Ideals and Dickson's Lemma

Definition An ideal $I \subseteq k[x_1, x_2, ..., x_n]$ is a **monomial ideal** if it is generated by a set of monomials $\{x^{\alpha}: \alpha \in A\}$, where $A \subseteq \mathbb{Z}_{\geq 0}^n$. In this case, we write $I = \langle x^{\alpha}: \alpha \in A \rangle$.

Properties of Monomial Ideals

1. If $I = \langle x^{\alpha} : \alpha \in A \rangle$, then $x^{\beta} \in I \Rightarrow x^{\beta} = x^{\gamma} \cdot x^{\alpha}$ for some $\alpha \in A$.

2. A polynomial *f* is in a monomial ideal $I = \langle x^{\alpha} : \alpha \in A \rangle$ iff every term of *f* is in *I*. Or equivalently,

 $I = \langle x^{\alpha} : \alpha \in A \rangle = \{ f \in k[x_1, x_2, \dots, x_n] : \text{ every term of } f \text{ is divisible by some } x^{\alpha}, \alpha \in A \}$

Exercise 1 (Visualizing Monomial Ideals) Consider the ideal $I = \langle x^6, x^2y^3, xy^5 \rangle \subseteq k[x, y]$. a) In the plane below, plot the set of all possible exponent vectors (m, n) appearing as exponents of monomials $x^m y^n$ in *I*.

b) (And just for fun...) If we apply the Division Algorithm to an element $f \in k[x, y]$, using the generators of *I* as divisors, what terms can appear in the remainder?

Definition. If $I \subseteq k[x_1, x_2, ..., x_n]$ is a monomial ideal, we define the **signature** of *I* to be the subset

signature(*I*) = {
$$\beta \in \mathbb{Z}_{\geq 0}^n$$
: $x^\beta \in I$ }.

Exercise 2 What is the signature of $I = \langle x^6, x^2y^3, xy^5 \rangle \subseteq k[x, y]$?

Exercise 3 More generally, what is the signature of $I = \langle x^{\alpha} : \alpha \in A \rangle \subseteq k[x_1, ..., x_n]$?

The main result of Section 2.4 is Dickson's Lemma...

Dickson's Lemma A monomial ideal has a finite basis. In particular, if $I = \langle x^{\alpha} : \alpha \in A \rangle$, there is a finite subset $\{\alpha(1), \alpha(2), \dots, \alpha(s)\} \subseteq A$ for which

$$\langle x^{\alpha(1)}, x^{\alpha(2)}, \dots, x^{\alpha(s)} \rangle = \langle x^{\alpha} : \alpha \in A \rangle$$

Exercise 4 Since monomial ideals are completely determined by their signatures, we should be able to restate Dickson's Lemma using the language of signatures - instead of monomials. Do this!

Proof of Dickson's Lemma.

We will proceed by induction on the number of variables, n. The base case amounts to the following lemma.

Lemma (Dickson's Lemma when n = 1) If $I = \langle x^{\alpha} : \alpha \in A \rangle$ is a monomial ideal in $k[x_1]$, then *I* is finitely generated.

Proof of Dickson's Lemma continued...

Claim: Let *L* be the ideal generated by the monomials in list below. Then L = I

from
$$J_0$$
: { $x^{\alpha_0(1)}, x^{\alpha_0(2)}, ..., x^{\alpha_0(s_0)}$ }
from J_1y : { $x^{\alpha_1(1)}y, x^{\alpha_1(2)}y, ..., x^{\alpha_1(s_1)}y$ }
from J_2y^2 : { $x^{\alpha_2(1)}y^2, x^{\alpha_2(2)}y^2, ..., x^{\alpha_2(s_2)}y^2$ }
:
from $J_{m-1}y^{m-1}$: { $x^{\alpha_{m-1}(1)}y^{m-1}, ..., x^{\alpha_{m-1}(s_{m-1})}y^{m-1}$ }
from Jy^m : { $x^{\alpha(1)}y^m, x^{\alpha(2)}y^m, ..., x^{\alpha(s)}y^m$ }

Proof of Claim:

So why are we so fixated on monomial ideals?

- (1) It is often easy to "see" what is true for monomial ideals
- (2) What is true for monomial ideals is often true for general ideals (Hilbert Basis Theorem)
- (3) There is frequently an easy reduction of the general to the monomial case.